Wednesday, May 27, 2020

Updates on the Radiation Markets with a Focus on LINAC


According to ResearchAndMarkets.com, a marketing research provider to businesses, the global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at CAGR of 3.38% over the period 2020-2024. Surging cancer cases, rising healthcare expenditure, economic and population growth with expanding urbanization are predicted to lead the global radiation therapy markets. However, a hindrance to these areas could be expected with stringent regulations and barriers to implementation. 

Advancements in technology, increasing preference towards non-invasive procedures, and public awareness, could be a few notable trends and are likely to develop over the next few years. The global radiation markets can be categorized into external beam radiation therapy, internal beam radiation therapy, and systemic radiotherapy. The external beam radiation therapy market is segregated both by type and device. 

Depending on the type, the global external beam market is segmented into the following categories: intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), tomotherapy, stereotactic radiosurgery, stereotactic body radiation therapy, and proton therapy. The global external beam radiation therapy market is also categorized into three areas – LINAC (Linear Accelerators), proton beam therapy devices, and compact advanced therapy devices. 

North America is the fastest-growing market because of the evolving usage in novel technologies, rising disposable income, and healthcare expenses. Rising awareness regarding procedures and sophisticated diagnostic approaches is a big part of the growth in this market. Europe comes in second for the largest market in radiation therapy and has already expanded into deeper economic levels. Radiation therapy treatment products and linear accelerator parts are expected to grow along with the trend in these developing market economies. 


Monday, May 11, 2020

Scientists Create a Particle Accelerator That Fits on a Chip



Scientists at Stanford and SLAC have created a silicon chip that can accelerate electrons by using an infrared laser to deliver a similar energy boost that takes microwaves many feet.

In a January issue of Science, a team led by an electrical engineer, Jelena Vuckovic, conveyed how he carved a nanoscale channel out of silicon, sealed it in a vacuum and sent electrons through an opening while beams of infrared light were transmitted by the channel walls to speed the electrons along.

The accelerator-on-a-chip demonstrated in Science is just a prototype. However, Vuckovic said its design and fabrication techniques could be scaled up to deliver particle beams accelerated enough to perform cutting-edge experiments in chemistry.

"The largest accelerators are like powerful telescopes. There are only a few in the world and scientists must come to places like SLAC to use them," Vuckovic said. "We want to miniaturize accelerator technology in a way that makes it a more accessible research tool."

"We can derive medical benefits from the miniaturization of accelerator technology in addition to the research applications," Solgaard said.

Click here to read more about Vuckovic’s research on his discoveries regarding the silicon chip accelerator.

American College of Radiology Issues New Guidelines for Non-Urgent Treatments


On May 6th, 2020, the American College of Radiology (ARC) released new guidelines that can help radiology practices resume non-urgent treatments safely. Treatments that are considered non-urgent are mammograms, oncologic and orthopedic imaging, and image-guided biopsies. Most of these treatments do not include radiation therapy that often involves the use of Linear Accelerators and CT scanners

As Coronavirus cases continue to drop in most areas, radiology practices are starting to resume non-urgent care practices to patients. “Radiology practices largely followed the World Health Organization, Centers for Disease Control and Prevention, and SCP guidance to postpone non-urgent care. While local conditions prevent a single prescriptive strategy to resume such care, general principles can apply in most settings…” said American College of Radiology Commission on Quality and Safety Chair, Jacqueline A. Bello, M.D., FACR. 

Read more about the ACR guidelines here